Cari lettori, oggi pubblico il primo articolo del mio blog dedicato ai problemi per acuire la mente. Con questi scritti intendo stimolarti ad usare anche il pensiero laterale e non solo quello verticale. Quest’ultimo modo di pensare risolve problemi apparentemente impossibili. È particolarmente utile a chi vuole innovare, inventare, creare nuove idee, trovare modi alternativi di risolvere problemi.

Prima di proporvi due problemi risolvibili avvalendosi rispettivamente del pensiero verticale e di quello laterale, sottolineerò cosa caratterizza e differenzia questi diversi modi di pensare. In sintesi evidenzierò le differenze degli emisferi destro e sinistro del nostro cervello. Per farlo mi servirò degli studi portati avanti dal padre fondatore del pensiero laterale: Edward De Bono.

 

 

PENSIERO VERTICALE VERSUS PENSIERO LATERALE[1]

Edward De Bono è la massima autorità mondiale nel campo del pensiero creativo; i suoi studi mostrano come poter superare i processi mentali basati sul solo pensiero verticale, meglio conosciuto come pensiero razionale o logico deduttivo.

Primariamente De Bono sottolinea come il pensiero verticale e quello laterale siano complementari tra loro. Il pensiero verticale è insegnato ampiamente in tutte le scuole di ogni ordine e grado e si attiva quando c’è una precisa direzione verso cui convergere.

I processi del pensiero laterale e verticale sono del tutto distinti. Non si tratta di dire quale sia il più efficace, sarebbe fuorviante oltre che essere un grave errore. Entrambi sono assolutamente necessari. La bravura sta nel saper individuare le caratteristiche salienti di entrambi e usarli in maniera selettiva, sulla base della specifica situazione da affrontare.

Per meglio comprenderne la portata è necessario definirli entrambi evidenziando gli elementi e le caratteristiche che li differenziano[2]. Per una migliore e immediata distinzione dell’enorme divario esistente tra questi due modi di pensare consiglio di leggere i prossimi due paragrafi confrontando passo dopo passo le affermazioni corrispondenti nei distinti elenchi. Tanto per essere chiari, la prima affermazione (I) dell’elenco appartenente al pensiero verticale (“Si basa sulla logica”) va contrapposto al primo dell’elenco (I) appartenente al pensiero laterale (“Si fonda sul pensiero e sulle idee, opera al di fuori della ragione”). Così facendo sarà più semplice e immediato coglierne le differenze.

 

PENSIERO VERTICALE:

  • Si basa sulla logica (I)
  • Ciò che conta è la correttezza del ragionamento (II)
  • Sceglie un percorso escludendone altri (III)
  • Seleziona l’approccio più promettente per la risoluzione del problema, il miglior punto di vista (IV)
  • Cerca di selezionare il miglior approccio (V)
  • Indica una direzione chiaramente definita verso la soluzione di un problema (VI)
  • Sa cosa sta cercando (VII)
  • È analitico, logico deduttivo (VIII)
  • È consequenziale, i passi devono essere percorsi in successione (IX)
  • Prevede che ad ogni passo bisogna essere corretti. In caso contrario il pensiero logico e la matematica non potrebbero funzionare (X)
  • Prevede l’uso della negazione per bloccare alcuni percorsi (XI)
  • Esclude ciò che è irrilevante (XII)
  • Tende a definire e classificare ogni aspetto del problema in termini di coerenza (XIII)
  • Segue i percorsi più probabili (XIV)
  • È un processo finito in cui ci si aspetta di arrivare a una risposta univoca (XV)
  • Opera solitamente in una fase precedente del pensiero laterale (XVI)
  • Utile nella trattazione di problemi che rispondono a logiche lineari (XVII)
  • Si fonda sull’ordine e sui modelli in precedenza dimostrati (XVIII)
  • È ritenuto la forma di pensiero degna di considerazione (XIX)
  • Elabora nuove idee in maniera accurata attraverso un procedimento logico (XX)
  • È solitamente usato dagli scienziati e dagli studiosi perché ritenuto più scientifico (XXI)
  • Presenta dei limiti se utilizzato come metodo di ricerca d’idee nuove (XXII)
  • Utilizza processi mentali naturali che tutti hanno appreso a scuola (XXIII)

 

PENSIERO LATERALE:

  • Si fonda sul pensiero e sulle idee, opera al di fuori della ragione (I)
  • La ricchezza delle possibili soluzioni è ciò che conta (II)
  • Cerca di trovare più percorsi oltre a quello conosciuto (III)
  • Genera tanti approcci alternativi senza escluderne alcuno a priori (IV)
  • Genera diversi approcci per il gusto di generarli (V)
  • Non indica alcuna direzione, si muove per il gusto di esplorare nuove vie, di cambiare, di generare nuove direzioni (VI)
  • Non vuole sapere cosa sta cercando sin quando non lo avrà trovato (VII)
  • È avvincente e continuamente alla ricerca di nuovi sentieri anche privi di apparente razionalità (VIII)
  • Può procedere a salti ma non necessariamente i passi da compiere devono essere in successione (IX)
  • Contempla la possibilità di non essere corretti ad ogni passo. È come quando si costruisce un ponte, le parti non devono reggersi da se in ogni stadio ma solo quando saranno tutti posizionati. Solo alla fine il ponte si reggerà da se (X)
  • Non prevede alcuna negazione. Ci possono essere circostanze in cui è necessario sbagliare sino alla fine (XI)
  • Accoglie favorevolmente anche intrusioni irrilevanti del problema (XII)
  • Prevede che le definizioni e le categorie possano cambiare (XIII)
  • Esplora i percorsi meno probabili (XIV)
  • È di tipo probabilistico (XV)
  • Tende a ristrutturare e riconsiderare quanto enunciato dal pensiero verticale (XVI)
  • Molto utile nella risoluzione dei problemi e nella generazione di nuove idee (XVII)
  • Pone l’accento sulla necessità di cambiare modelli già noti cercando di renderli ancora più utili (XVIII)
  • Non è solitamente ritenuto degno di considerazione perché non argomenta in termini logico-deduttivi (XIX)
  • Elabora nuove idee anche favorendo l’interazione di eventi casuali (XX)
  • È solitamente usato nel mondo dell’arte, nel quale è chiamato pensiero creativo, in quanto gli artisti sono generalmente disposti a esplorare, sono aperti alle idee e agli inviti del caso (XXI)
  • Offre la massima efficacia quando impiegato per ricercare idee nuove (XXII)
  • Si avvale di un abito mentale che va costruito con l’applicazione di tecniche volte a deviare la tendenza naturale nel seguire percorsi logici deduttivi (XXIII)

Confrontando i contenuti dei due elenchi emerge chiaramente la netta differenza di approccio che c’è tra i due tipi di pensiero. Due mondi opposti e complementari. Come già detto, sussiste la naturale tendenza ad attribuire una maggiore rilevanza al pensiero verticale perché logico. Viceversa, il pensiero laterale appare meno nobile perché non può essere compreso ricorrendo alla sola logica lineare.

Al fine di comprendere empiricamente la differenza tra pensiero verticale e laterale ci si avvarrà ancora una volta della produzione scientifica di Edward De Bono. In particolare, saranno presentati ‘l’aneddoto dell’usuraio’ e ‘l’analogia delle graffette’ che riescono a sintetizzare magnificamente l’idea di fondo che sottende a questi due modi di pensare.

 

ANEDDOTO DELL’USURAIO[3]

Un tempo i debitori insolventi potevano essere messi in prigione. Un mercante di Londra si trovò fortemente indebitato nei confronti di un usuraio che si invaghì della sua bellissima figlia. L’usuraio propose di condonare il debito in cambio della ragazza. Giacché il mercante e sua figlia rimasero inorriditi dalla proposta, l’usuraio propose di lasciar decidere alla provvidenza. Disse che avrebbe messo due sassolini in una borsa vuota, uno bianco e uno nero, lasciando alla fanciulla l’onere di estrarne uno. Se fosse uscito il sassolino nero sarebbe diventata sua moglie e il debito del padre condonato. Se fosse stato estratto il bianco sarebbe rimasta con suo papà e il debito ugualmente condonato. Ma se si fosse rifiutata di procedere con l’estrazione, suo padre sarebbe finito in prigione e lei morta di stenti.

Il mercante, ancorché riluttante, acconsentì non avendo alternative praticabili. L’usuraio, trovandosi in un vialetto di ghiaia, raccolse i due sassolini. Mentre lo faceva la ragazza si accorse che aveva messo due sassolini neri all’interno della borsa. Subito dopo l’usuraio invitò la ragazzina ad estrarre il sassolino che avrebbe deciso la sua sorte. Se foste stati al suo posto cosa le avreste suggerito di fare?

Avvalendosi del pensiero verticale, la ragazza avrebbe avuto tre possibilità:

  • non estrarre il sassolino;
  • mostrare che nella borsa vi erano due sassolini neri smascherando l’usuraio imbroglione;
  • estrarre uno dei due sassolini neri.

Nessuno di questi consigli avrebbe potuto salvarla dal triste destino, sarebbe finita nelle mani dell’usuraio.

La ragazza invece fece ricorso al pensiero laterale. Non si concentrò sul fatto che avrebbe dovuto estrarre un sassolino (pensiero verticale) ma ragionando sul sassolino bianco mancante (pensiero laterale). Orbene la ragazza ebbe l’intuizione giusta. Infilò la mano all’interno della borsa estraendo il sassolino senza guardarlo lasciandoselo sfuggire di mano per farlo cadere a terra dove si confuse tra tutti gli altri sassolini. Chiedendo scusa per la sbadataggine invitò il padre e l’usuraio a guardare all’interno della borsa per verificare il colore del sassolino rimasto. Così facendo dovettero presumere che quello estratto era bianco visto che nella borsa si trovava un sassolino nero. Lo stratagemma escogitato dalla ragazza, frutto del pensiero laterale, le consentì di rimanere col papà e ottenere la remissione del debito.

 

ANALOGIA DELLE GRAFFETTE[4]

Quest’analogia consente di evidenziare le differenze che intercorrono tra l’interazione di eventi casuali e l’elaborazione accurata attraverso un procedimento logico quando s’intende articolare una nuova idea.

Si può costruire una catena di graffette unendole, con cura e in successione, una per una. La stessa catena può essere costruita in modo del tutto diverso. Si possono aprire leggermente queste graffette, porle tutte insieme all’interno di una bacinella agitandola energicamente per un tempo piuttosto lungo. Alla fine, ne uscirà un oggetto simile a una catena frutto dell’intreccio casuale delle graffette.

 

Quali conclusioni possono essere tratte dall’analisi di quest’analogia? Se si vuole costruire una catena di graffette solida e uniforme occorre rivolgersi al pensiero verticale. Questo consente una riproduzione perfetta dello schema scelto. Se, viceversa, si vuole creare qualcosa di diverso e innovativo, ci si deve avvalere del pensiero laterale che consentirà l’emergere di una catena, o più spezzoni della stessa, dalle forme più disparate.

Che uso farne allora del pensiero laterale? Esso si presta a generare nuove idee secondo tecniche e abiti mentali ben definiti da De Bono. È utilissimo nella gestione di problemi che ammettono diverse soluzioni e che non sono risolvibili attraverso percorsi logico-deduttivi. Il pensiero laterale è particolarmente utile quando si vuole riesaminare paradigmi mettendone in discussione gli assunti principali.

Voglio concludere questo articolo riproponendo due noti rompicapi. “Il rompicapo del lupo, della capra e del cavolo”, risolvibile facendo ricorso al pensiero logico-deduttivo. In tal caso sfrutteremo preminentemente l’emisfero sinistro del nostro cervello. “Il problema dei 9 punti”, di contro, va risolto avvalendosi del pensiero laterale. In questa occasione ci verrà in aiuto l’emisfero destro del cervello.

Il noto rompicapo del lupo, della capra e del cavolo, da cui deriva la famosa frase del “salvare capra e cavoli”, mi ha affascinato sin da piccolo, quando mi imbattei per la prima volta nella sua risoluzione. L’ho incontrato nuovamente sulla mia strada, in età adulta, quando ho deciso di leggere il libro curato da Raffaella Franci[5]. In questo testo si riproponevano diversi giochi matematici che, Alcuino di York (monaco inglese chiamato alla corte di Carlo Magno nell’anno 781 dopo Cristo), raccolse in una serie di problemi originali da usare per educare i giovani. Può essere così enunciato: “un uomo deve trasportare aldilà di un fiume un lupo, una capra e un cavolo. Ha disponibile una barca che è in grado di portare solo due di essi. Deve trasportare i due animali e il cavolo di là del fiume senza causare danno alcuno”. Il problema cui dovrà rispondere il lettore è il seguente: «Come trasferire i due animali e il cavolo sull’altra sponda senza causare danni?»

 

 

 

Il problema dei 9 punti prevede appunto di unire tutti i nove punti presenti nella figura sottostante tracciando il minor numero possibile di linee rette, ottenute senza mai staccare la matita dal foglio[6]. L’enunciazione di questo problema implica la determinazione dei veri confini del problema stesso. Questo esempio è cruciale per comprendere quanto sia importante possedere la capacità di determinare i confini di un problema per giungere alla sua soluzione.

 

 

Delle possibili soluzioni di entrambi i problemi discuteremo nel prossimo articolo della categoria “Problemi per acuire la mente”. Nel frattempo, vi invito a commentare questi problemi in fondo al presente articolo suggerendo le vostre soluzioni. Ne discuteremo al prossimo appuntamento. Se volete inviatemi pure le foto delle vostre soluzioni in posta elettronica. Saranno più chiare e immediate nonché facilmente illustrabili a tutti i lettori del blog al prossimo appuntamento.

Non vedo l’ora di guardare le vostre soluzioni!

A presto!

 

 

[1] Leo Ferrante, Innovazione e creatività: quale modello organizzativo e stile di leadership adottare? Proposta di applicazione all’interno del sistema di informazione per la sicurezza della repubblica, Casa Editrice Il Filo di Arianna, La Spezia, 2020, pp. 112 – 123.

[2] Edward De Bono, Creatività e pensiero laterale, BUR Rizzoli, Milano, 2014, pp. 38 – 45.

[3] Edward De Bono, Il pensiero laterale. Come produrre idee sempre nuove, BUR Rizzoli, Milano, 2016, pp. 9-11.

[4] Edward De Bono, Il pensiero laterale. Come produrre idee sempre nuove, BUR Rizzoli, Milano, 2016, pp. 104-105.

[5] Alcuino di York (a cura di Raffaella Franci), Giochi matematici alla corte di Carlomagno. Problemi per rendere acuta la mente dei giovani, EDIZIONI ETS, Pisa, 2005, pag. 55.

[6] Murray Gell-Mann, Il quark e il giaguaro. Avventura nel semplice e nel complesso, Bollati Boringhieri, Torino, 2017, pp. 308-309.